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Report on International Workshop on Stochastic Filtering Theory, June 26-28, 1994 

A total of 39 participants registered and attended this workshop, held on the 
campus of the University of North Carolina in Chapel Hill, to review the most recent 
advances in major new areas of filtering theory. They came from 17 foreign countries 
and the United States. There were major talks by 20 distinguished mathematicians and 
shorter talks by three young researchers in the field. 

I give below a very rough classification of the papers presented: 

Theoretical aspects of nonlinear filtering theory: 14 
Risk sensitive control problems: 2 
Asymptotic methods: 4 
Numerical and approximation methods 3. 

On the last day, Professor F. LeGland gave a special lecture on "Numerical 
methods in optimal nonlinear filtering." Professor E. Platen also gave a brief informal 
talk on "Higher order approximate nonlinear filters." The two talks were followed by a 
lively discussion. 

As our technical report, we attach the following: 

1. Complete schedule for the three days of the Workshop. 
2. List of participants in attendance, and their affiliations. 
3. Abstracts for the 23 talks presented at the Workshop. 
4. Outline of the survey on Numerical Methods in Optimal Nonlinear Filtering. 

4 k^L ■^-UA. 

G. Kallianpur, Principal Investigator 

Sponsored by the U.S. Army Research Office, Mathematical Sciences Division, 
through grant DAAH04-94-G-0077. 
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Stochastic Filtering Workshop 
(310 Peabody Hall, University of North Carolina) 

Registration:   Saturday, June 25, 8 —11 p.m., Carolina Inn Lobby / 

Morning 

8:45 a.m. 

9:00-9:50 

9:55-10:45 

11:00-11:50 

11:55-12:45 

12:45-2:30 

E. Pardoux 

B. Grigelionis 

Sunday, June 26 

Welcoming Remarks 

"Some asymptotic results in nonlinear filtering" 

"Infinite dimensional integrators in nonlinear filtering" 

A. Bensoussan (w/R.J. Elliott)   "On risk sensitive stochastic control problems with 
partial information" 

B.L. Rozovskii (w/R. Mikulevicius)   "Cameron Martin development as a numerical 
algorithm for nonlinear filtering" 

Lunch 

Afternoon 
2:30 - 3:20 E. Platen "Higher order and implicit Markov chain filters" 

3:25-4:15 J.S. Baras "Stochastic filtering theory and nonlinear robust control" 

4:30 - 5:20 E. Mayer-Wolf "Conditional densities in filtering and other problems" 

5:30-6:00      R. Leland "A new formula for the log-likelihood gradient for continuous time 
stochastic systems" 

Morning 

9:00-9:50 

9:55-10:45 

11:00-11:50 

11:55-12:45 

12:45-2:30 

Afternoon 

2:30-3:20 

3:25-4:15 

4:30-5:00 

5:10-5:40 

8:00 

Monday, June 27 

H. Kunita "The asymptotic behaviors of solutions of Zakai equations" 

J.M.C. Clark      "Questions of prior dependence and approximation for discrete-parameter 
Markov filters" 

F. Le Gland       "Nonlinear filtering with perfect observations" 

R. Mikulevicius (w/B. Rozovskii)   "On Holder continuity of solutions to Zakai equations" 

Lunch 

R.L. Karandikar(w/A. Bhatt h G. Kallianpur)   "Uniqueness of solutions of the Zakai 
equations" 

H. Korezlioglu   "Approximation of filters by random sampling" 

R. J. Elliott (w/M. James)   "Risk sensitive control of a partially observed Markov chain" 

A. Budhiraja (w/G. Kallianpur)    "A system of integral equations in nonlinear filtering" 

Dinner 

'for 
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Page 2 — SF Schedule 

Tuesday, June 28 

Morning 

9:00 - 9:50      D.L. Ocone "Asymptotic dependence of optimal filters on initial priors" 

9:55 -10:45    A. Bagchi "Estimation of nonlinear boundary value processes" 

11:00-11:50   W.J. Runggaldier (w/L. Stettner)    "Large time behavior of the filter corresponding to 
discrete time partially observed stochastic control problems" 

11:55-12:45   V. Benes "Nonlinear filtering in action: Solvable examples from optimal control" 

12:45-2:30    Lunch 

Afternoon 

2:30-3:20      0. Enchev "Signals, noise and filtering on manifolds" 

3:25 - 3:55      P. Florchinger    "Filtering with a discontinuous observation on manifold" 

4:00 - 4:20      D. Crisan "Explicit formulae for the conditional densities 
for some finite dimensional filters" 

 .  • • • « a a  
4:30 - 5:00      F. LeGland gives a brief survey of discrete approximations to solutions 

of the Zakai equation" 

5:05 - 5:35 Round Table Discussion 
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Workshop on Stochastic Filtering Theory 

Estimation of Nonlinear Boundary Value Processes 

Arunabha Bagchi 
Department of Applied Mathematics 

University of Twente 
P.O. Box 217, 7500 AE Enschede, The Netherlands 

Phone 31-53-893452 
Fax 31-53-340733 

e-mail bagchi@math.utwente.nl 

Abstract 

Boundary value processes are stochastic processes satisfying ordinary or partial dif- 
ferential equations with, possibly random, boundary conditions. For linear equations, 
existence of such processes and the associated estimation problems have been extensively 
studied in the literature [1]. The mathematical formulation of such boundary-value prob- 
lems for nonlinear equations is already a difficult one. This is due to the nature of Ito 
integrals, which are defined forward in time. We study this problem when the input noise 
is modelled directly as a finitely-additive white noise [2], instead of the usual approach 
where one works with the Brownian motion [2]. We consider a semilinear two-point 
boundary value problem 

x(t) = A(t)x{t) + f(x(t)) + n(t) 

Fox(0) + FlX(l) = F 

where A,F0,Fi are m x m matrices, F is an m-dimensional random vector, n(-) is a 
finitely additive Gaussian white noise, and / is bounded and Lipschitz continuous. We 
show that the solution process {*(■)} exists and is unique. We then consider the associated 
estimation problem. Let the observation process be given by 

y(t) = x(t) + n0(t) 

where n0(-) is another Gaussian white noise.   We solve the smoothing problem of esti- 
mating «(<), for fixed t, based on observing y(s);0 < s < 1.  Estimation problem for a 
different type of boundary value processes where the process satisfies a nonlinear elliptic 
partial differential equation has been studied in [3]. 

References 

[1]    A. Bagchi, "Boundary value processes:  estimation and identification", Computers and 

Mathematics with Applications, 19, pp. 9-19, 1990. 

[2]    G. Kallianpur and R.L. Karandikar,  White Noise Theory of Filtering, Prediction and 

Smoothing, Gordon and Breach, London, 1988. 

[3]    S.-I. Aihara and A. Bagchi, "Nonlinear smoothing for random fields", Stochastic Pro- 

cesses and Their Applications (accepted for publication). 



Stochastic Filtering Theory, Risk-Sensitive Stochastic 
Control and Nonlinear Robust Control 

John S. Baxas 

Institute for Systems Research, University of Maryland 

College Park, MD  20742 

Abstract 

We present recent advances in output robust control of nonlinear systems, using 

stochastic control and stochastic filtering methods. We first establish the equivalence of 

three seemingly unrelated problems: (a) The so called four-block formulation of the 

nonlinear output feedback robust control problem; (b) A partially observed differential 

game with the same dynamics as (a); and (c) A risk-sensitive, partially observed 

stochastic control problem. Working first in (c) we obtain naturally an "information 

state" for the problem which summarizes the past input and output histories as needed 

by the controller. We also present the dynamical equation satisfied by the "information 

state". We also present the Dynamic Programming equation that the value function of 

(c) satisfies. In the formulation of (c) from (b) we introduced a "small" noise in the 

system dynamics and in the observation equation. 

We now take the limit as the noise vanishes. We then obtain a Hamilton-Jacobi- 

Isaacs pde characterizing the value of the differential game, and another pde 

characterizing the "information state" of the differential game. We then show how the 

differrential game solution provides the general solution to the output feedback robust 

control problem for nonlinear systems. The controller has two parts: (i) A dynamic 

"observer" that is essentially the dynamical system describing the evolution of the 

information state of the associated differential game (see problem (b) above); (ii) A 

memoryless feedback control as a function of the information state, obtained from the 

off-line solution of the H-J-I p.d.e. of the associated differential game. 

We also discuss the computational complexity of the general solution and approx- 

imate solutions provided by certainty-equivalence controllers. We present 

computational results on highly nonlinear, low order ( < 2) nonlinear control problems, 

which clearly illustrate that the method produces stabilizing controllers. We show that 

for robust stabilization by output feedback control the H-J-I equation leads to a Partial 

Differential Inequality in the sense of dissipative systems. We finally present a frame- 

work for studying the tradeoffs between model accuracy, feedback control performance 

and complexity. 



Nonlinear Filtering in Action: Solvable Examples from Optimal Control. 

Vaclad Benes 

Abstract: Some simple problems of control with incomplete information axe compared 

in point of structure, optimal law, ease of solution, and relation to Mortensen's 

equation. 

A FINITE DIMENSIONAL RISK SENSITIVE 
CONTROL PROBLEM 

ALAIN BENSOUSSAN 

I.N.R.I.A. 
ROCQUENCOURT 

78153 LE CHESNAY CEDEX 

FRANCE 

AND 

ROBERT J. ELLIOTT 

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY 

UNIVERSITY OF ALBERTA 

EDMONTON, ALBERTA 

T6G 2G1   CANADA 

Abstract. A partially observed stochastic control problem with exponential running cost 
is considered. The dynamics are linear and the running cost quadratic, though the control 
may enter nonlinearly. Explicit solutions are found to a modified Zakai equation and a 
backward adjoint equation. This enables the problem to be expressed in terms of observable 
finite dimensional dynamics and a separation principle applied. 



Uniqueness and robustness of solution 
of measure valued equations of 

nonlinear filtering 1 

Abhay G. Bhatt and G. Kallianpur 
Center for Stochastic Processes 

University of North Carolina at Chapel Hill 

and 

Rajeeva L. Karandikar 
Indian Statistical Institute, New Delhi 

Abstract 

We consider the Zakai equation for the unnormalised conditional distribution 
a when the signal process X takes values in a complete separable metric space 
E and when h is a continuous, possibly unbounded function on E. It is assumed 
that X is a Markov process which is characterized via a martingale problem for 
an operator A0. Uniqueness of solution for the measure valued Zakai and FKK 
equation is proved when the test functions belong to the domain of AQ. It is also 
shown that conditional distributions are robust. 

Research partially supported by the National Science Foundation and the Air Force Office of 
Scientific Research Grant No. F49620-92-J-0154 and the Army Research Office Grant No. DAAL03- 
92-G-0008. 

AMS 1980 subject classification: Primary 60G35, 62M20, 93E11 Secondary 60G44, 60G57, 60H15, 
60J35. 

Key words and phrases: Nonlinear filtering, Zakai equation, Martingale problem, robustness 



A System of Integral Equations in Nonlinear filtering. 

A. Budhiraja and G. Kallianpur 

In this work we study multiple integral representations in problems of nonlinear filtering. The first 

part of the talk focuses on multiple Stratonovich integrals. It is shown that the unnormalized 

conditional expectation in the filtering problem can be expressed as an infinite sum of such multiple 

integrals. A mean square bound, for the error on truncating the infinite series, is obtained. A discrete 

scheme for approximating the conditional expectation is indicated. 

In the second part of the talk, multiple Wiener integral representations for the conditional density are 

studied and a system of integral equations for the kernels is given. It is shown that the system admits 

a unique solution. This also leads to a system of partial differential equations satisfied by the 

coefficients of the kernels in the multiple integral representation for the conditional density. 



Questions of Prior Dependence and Approximation 
For Discrete-Parameter Markov Filters 

J.M.C. Clark 

Abstract 

In this talk the asymptotic properties of discrete-parameter nonlinear filters and 

their approximations will be considered. One question to be addressed is whether a 

filter 'forgets' its prior distribution. Theorems on this in the continuous-parameter case 

have been produced by Kunita and Ocone in which conditional distributions from dif- 

ferent 'priors' converge weakly to each other; partial results will be discussed for the 

discrete-parameter case in which the conditional distributions converge in total varia- 

tion. A second topic to be considered concerns the long-term behavior of a hierarchy of 

approximate filters that converge to an ideal filter; here the question is whether the 

approximate filters remain close to the ideal filter over long periods of time. 

Explicit Formulae for the Conditional Densities 

For Some Finite Dimensional Filter 

D. Crisan, University of Edinburg 

The explicit form for the unnormalised measure for the Benes filter and for the normalised 

measure for the linear filter are derived. These forms are simpler than the conventional ones and in the 

second case we obtain the probability measure without solving the Ricatti equation and the SDE to 

find out the covariance matrix and the mean. The method involves the explicit expression for the 

quantity: 

exp(F(Wt) + J W; f(s) ds -1 } |AWJ2 ds)   | Wt = a 
0 o _ 

where {(Wt); t > 0} is a d-dimensional standard Brownian motion, A is a d x d real matrix, F: R —+R 

and f: [0,t]—»R   is square integrable. 



Risk-Sensitive and Risk-Neutral Control for 
Continuous-Time Hidden Markov Models 

M.R. James* R.J. Elliott* 

i Abstract 

In this paper the optimal control of a continuous time hidden Markov model- 
is discussed. The risk sensitive problem involves a cost function which has an 
exponential form and a risk parameter, and is solved by defining an appropriate 
information state and dynamic programming. As the risk parameter tends to zero, 
the classical risk neutral optimal control problem is recovered. The limits are proved 
using viscosity solution methods. 



Signals, Noise and Filtering on Manifolds 

O.B. Enchev 

Boston University 

Abstract:   In flat spaces, the most commonly used filtering scheme has the form: 

observation = signal + noise. 

In spaces with curvature the "+" above isn't relevant and one has to use a different 

scheme, which takes into account the fact that the state-space is curved. I will propose 

one such scheme. It is based on a method, developed jointly with D.W. Stroock (MIT). 

The key instrument is what we call "diffusion of smooth curves", described via C°°- 

valued SDE's (we treat such equations in ultra-strong sense; not in generalized sense 

after integration against test functions — this was possible with a trick due to D.W. 

Stroock). Our C°°-valued SDE may be regarded as a stochastic analog of Cartan's first 

fundamental form. 

We also obtain an analog of Cameron Martin's theorem and integration by parts 

in Wiener's path space on compact Riemannian manifold. 

Filtering with a discontinuous observation on manifold. 

Patrick Florchinger 

Universite de Metz 

Abstract: We consider a random signal (a vectorial Markovian process) partially 

observed on a symmetric Riemannian space. The observation is a cadlag stochastic 

process given by a multiplicative perturbation of the signal. We prove that the filter is 

absolutely continuous with respect to the Lebesgue measure. The main tool used in this 

paper is the stochastic calculus of variations (Malliavin calculus). 



INFINITE DIMENSIONAL INTEGRATORS IN NONLINEAR FILTERING 

Bronius GRIGELIONIS 

Institute of Mathematics and Informatics 

Akademieos 4, 2600 Vilnius, Lithuania 

Abstract 

Let ( H , Bj be a measurable space with the countably gene- 

rated cr  -algebra 3 }  (Sl,¥/F, P) be a stochastic basis, F 

be the subfiltration of F    and {  0t ,£*<>}    be a  F -adapted 

0£ -valued stochastic process. Extending the well known method 

of M.lujisaki, H.Kunita and G.Kallianpur, we shall discuss the 

nonlinear filtering equation for the aposteriori distributions 

p| Q.  e 6 i 5-ü } ti ° ; & e ^;  basing on the representation 

properties of the ( P ,PJ -local martingales as the sums of 

stochastic integrals with respect to the defined continuous 

quasicomplete locally convex topological vector space valued 

local martingale and the compensated point measure on a Blackwell 

space, as well as the transformation properties of changes of 

filtrations. It will be also presented the linear stochastic 

equation (Zakai's equation) for the unnormalized aposteriori 

distribution in this generality. 



Approximation of Filters by Random Sampling 

Hayri Korezlioglu 

Ecole Nationale Superieure des Telecommunications 
46, rue Barrault, 75634, Paris, Cedx 13, France 

korez@res.enst.fr 

The following system of state and observation equations is considered 

x(t)   =   x0+      f(x3)ds + / g(x3)dB3 
Jo Jo 

y(t)   =    J h{x3)ds + Wt 

where B and W are two real valued independent Brownian motions and indepen- 
dent of x0, and /, g and h are real functions having Lipschitz and linear growth 
properties, so that the system has a unique continuous Markovian solution. The 
approximation problem by periodic sampling was considered in [1]. Here the sam- 
pling points are supposed to form a sequence of stopping times depending on the 
observation process y. Similarly to [1] an approximation of the filter at sampling 
points is proposed and the convergence of the approximate filter to the true one 
is considered. Finally, the feasibility of the approach is dicussed. The results ob- 
tained in this work can be extended to a more general multidimensional case with 
functions /, g and h also depending on y as in [1]. 

[1] H. Korezlioglu and W.J. Runggaldier:.Fi#en'n<7 for nonlinear systems driven by 
nonwhite noises: an approximation scheme, Stochastics and Stochastics Reports, 
Vol. 44, pp. 65-102. 



The asymptotic behaviors of solutions of Zakai equations 

Hiroshi KUNITA 

We consider a stochastic partial differential equation on Rd, called a Zakai equation. 

u(x,t)   =   f0(x)+ f Lu(x,r)dr+J2 f Yku(x,r)dWk{r) 
Jo k=1Jo 

+ J2 f hk{x)u{x,r)dWk{r). 
tr, Jo 

Here L (Yk) is a second order (a first order) linear partial differential operator, and 

(W1^), • • •, Wn(t)) is an n-dimensional standard Brownian motion. We discuss the asymp- 
totic behavior of the solution u(x, t) as t tends to infinity, comparing this with the asymp- 
totic property of the solution of the equation excluding the terms of random perturbations, 

i.e., the solution of the partial differential equation 

— = L%    u\t=0 = f0. 

The asymptotic behavior of the solution u(x, t) depends on the recurrence or the transience 
of the diffusion process with infinitesimal generator L, as is well known. We will show that 
the asymptotic behavior of the solution u(x, t) also depends on whether the diffusion process 
with the infinitesimal generator L is transient, null recurrent or positive recurrent. 

Assuming that the initial function /o(s) satisfies lim^oo fo(x) = 0, the solution u(x,t) 
converges to 0 in IP for any p > 1 if the associated diffusion process with generator L is 
transient or null recurrent. However, if the associated diffusion process is positive recurrent 
with invariant probability A, the situation is complicated. Results are summarized as 
follows under Conditions (C.l) and (C.2) to be stated precisely in the lecture. 

(1) Assume hk = 0;. k = 1, ...,n. Then the time average T-1 J0
T u(x,t)dt of u(x,t) 

converges to A(/0) = / f0(x)A(dx) a.s. and in Lp (p > 1) as t —► oo for all x. However 

u(x,t) does not converge to A(/0) in Lp (p > 1) as t —*■ oo in general. The convergence 

takes place if and only if the initial function f0 satisfies A(Yj-/o) = 0 for any k = 1, ...,n. 
(2) Assume hk ^ 0 for some k. Then u(x,t) converges to 0 a.s. but does not converge 

to OinV {p> 1) iffo^O. 



Nonlinear Filtering with Perfect Observations 

Marc Joannides (INRIA Sophia-Antipolis) 
Frangois LeGland (IRISA/INRIA Rennes) 

Abstract : We are interested in nonlinear filtering problems, where the observation 
noise has a singular covariance matrix. There are indeed numerous situations of practical 
interest, where some perfect noise-free information is available about the unknown state. 
Another motivation is that a better understanding of the singular case should help design- 
ing robust and efficient numerical procedures in the important case of a small observation 
noise. To be specific, we consider an hypoelliptic diffusion process {Xt, t > 0} in Rm, 
with noise-free e£-dimensional discrete time observations 

zk = HXtk) . 

What makes this problem singular is that the state Xtk is known exactly to belong to the 
level set Mk = M(zk), where for all z € Rd 

M(z) = hr\z) = {xeRm : h(x) = z) . 

Therefore, the conditional probability distribution Hk(dx) of the state Xtk given observa- 
tions {z0, • • •, Zk}, is supported by the set Mk, i.e. can not in general have a density w.r.t. 
the Lebesgue measure on Rm. 

The first step is to reduce the original problem as follows : Let X be a r.v. in Rm with 
probability distribution fi(dx) = p(x) dx and continuous density p(x), and let Z = h(X). 
What is the conditional probability distribution of the r.v. X given [Z — z] ? 

If z € Rd is a regular value of the mapping h, the solution is provided by the well- 
known area or co-area formula depending on whether m < d or m > d, see Federer 
(1969) or Evans and Gariepy (1992). However, we are interested in studying also the case 
of singular values z 6 Rd. 

For this purpose, we introduce the following perturbation approach : From Takeuchi 
and Akashi (1985), we know that for any test function <f> defined in Rm 

E[4>(X) | Z*] —> E[</>(X) | Z] 

in probability as e J. 0, where Ze = Z + V£ = h(X) + V£, and Vs is a i-dimensional 
Gaussian r.v. with covariance matrix e Id, independent of the r.v. X. The problem reduces 
then to studying the asymptotic behaviour as e J. 0 of some Laplace integrals. In the case 
of a regular value z G Rd, we adapt the result of Hwang (1980) to our situation, and 
hopefully recover the results provided by the direct approach. In the case of a singular 
value z e Rd, we obtain some partial results when m < d, using ideas contained in Ellis 
and Rosen (1982). We illustrate the results with some examples. 

We conclude with another application of the asymptotics of Laplace integrals : We 
consider the parameter estimation problem in a diffusion process with small noise, when 
the standard identifiability assumption does not hold, and we obtain a consistency result 
for the Bayesian estimate, which extends a recent result of Kutoyants (1992). 



A Log-Likelihood Gradient for Continuous Time Stochastic 
Systems Using Finitely Additive White Noise Theory 

Robert Leland 

University of Alabama 

Using a finitely additive white noise approach, an explicit expression 
is derived for the gradient of the log-likelihood ratio for estimating 
parameters of a continuous time linear stochastic system from noisy 

observations: 

*& = Ax(t) + Fw{t) 

y(t)=Cx(t) + Gv(t) 

where w(t) and v(t) are finitely additive Gaussian white noise pro- 
cesses. The gradient formula includes the smoother estimates of the 
state vector, and derivatives of only the system matrices, and not the 
estimates or error covariances. A scheme to calculate the log-likelihood 
gradient without solving any Riccati equations is described when only 
A and the initial covariance are functions of the unknown parameter. 



Conditional Densities in Filtering and Other Problems 

Eddy Mayer-Wolf 

Abstract 

In filtering problems one is often interested in the question whether there exists a 

density for the conditional law of the state. This issue will be addressed in the following 

general form: given that a functional U of a process xt possesses a density, what must 

be assumed for the same to remain true when U's law is conditional on a second process 

7t? 

The answer involves a certain entropy continuity property of y's law conditioned 

on x, and can be considered to be a qualitative version of Bayes rule. 

Concrete examples which illustrate these results will be discussed as well. 

On Holder Continuity of Solution to Zakai Equations 

R. Mikulevicius 

University of Southern California, Los Angeles 

We consider Zakai type nondegenerated equations with bounded coefficients: 

{du = (a1Jux.x. + bHix. + cu + f) dt + (hu + g)dwt 

u(0,.) = 0, (t,x)e[0,l]xRd. 

We look at the solution as a function of (t,x) with values in E = Lp(f2,9,P). If 

a,b,c,f belong to the Holder space Ca and h,g belong to the Holder space C ~^a 

(a e (o,l)), we find a solution u e C +a(E) such that |u|2+a < const(|f|a + |g|i+a)- 



Asymptotic Dependence of Optimal Filters on Initial Priors 

D. Ocone 

ABSTRACT 

Our talk surveys known results for the problem of "forgetting of initial 

conditions" in nonlinear filtering of Markov processes. For a Markov process (X,Y), the 

condition distribution nt, of Xt given Y? = (Ys, 0 < s < t) is computed by a Bayes rule 

formula nt = n t(i/, YJ?) taking two inputs, the observation path and the initial law v of 

(X0,Yo), which determines the prior law on (X,Y) by virtue of the Markov property. 

Roughly speaking, we say that the filter forgets initial conditions if nt - nt—0 in some 

sense as t—oo where St = nt(F, Y^) represents a filter computed with an erroneous 

initial law T # v. We discuss the following main points a) (J.M.C. Clark) the relative 

entropy between nt and It as a positive supermartingale, b) almost sure exponential 

convergence of linear filters with incorrect priors, c) L2-convergence of nt(tf) - 5t(tf) to 0 

for ergodic signals in additive white noise. The talk presents joint work with E. 

Pardoux. 



Filtering of a Partially Observed Diffusion 

with High Signal-to-l\loise Ratio 

£. Pardoux 

(joint work with A. Gegout-Petit) 

J. Picard was the first one to prove rigorous results about approximate finite dimensional 

nonlinear filters for one dimensional diffusion observed in small noise. We consider the more general 

filtering problem: 

XJ = *!+  [^(Xj.X^ds + B? 
J o 

X2 = x2 + ff2(X3\X
2)ds + B2 

Yt =   [ h(Xl)ds + eWt, 
J o 

where B1, B2 and W are mutually independent standard Brownian motions, fx and f2 are Lipschitz 

functions, and h € C1(R) and satisfies: 0 < a < h'(x) <b,x£R. 

We propose an approximate filter which consists of a one dimensional Picard-type filter for Xj, 

and an approximate conditional law for X2, which solves an SPDE with one dimensional space 

variable, and give an estimate of the difference between our approximate and the optimal filter. 

Higher Order and Implicit Markov Chain Filters 

Eckhard Platen 

Australian National University 

Institute of Advanced Studies, Canberra 

Abstract: The talk considers some aspects of the construction of hidden Markov chain 

filters for discrete time numerical methods in stochastic differential equations. Strong 

discrete time schemes lead to high order filters. The derivation of implicit filters allows 

a considerable increase of the stability of corresponding filtering algorithms. 



B.L. Rozovskii1 

University of Southern California, Los Angeles 

Cameron-Martin Development as a 
Numerical Algorithm for Nonlinear Filtering 

We introduce a modification of the Wiener chaos expansion to give an 
explicit solution to the Zakai equation. We show that this representation is 
of the form 

u(t,x) = ^2<pa(t,x)ha(y) 
a 

where functions (pa depend only on the coefficients of the Zakai equation and 
functions ha are determined only by the observations. We discuss applica- 
tions of this formula to the numerical solution of the Zakai equation. 

1This talk is based on joint works with R. Mikulevicius and S. Lototsky 



Large time behaviour of the filter corresponding to 
screte time partially observed stochastic control problems 

Wolfgang J. Runggaldier and Lukasz Stettner 

Investigating filtering problems is useful for various purposes, among which also 

the study of stochastic control problems under partial observation of the state. In the case 

of infinite horizon problems with ergodic cost, the long time behaviour of the filter 

becomes then important. In fact, if one considers controls that are functions of the current 

filter, the filter process itself becomes Markov and, under certain assumptions, the ergodic 

cost function can then be expressed as an integral with respect to an invariant measure of 

the filtering process. It follows that, when studying e.g. approximations for ergodic cost 

problems, it is important to have results on approximations, convergence, as well as 

uniqueness of invariant measures of the filter corresponding to partial observation control 
problems. 

While for uncontrolled models there exist results characterizing the ergodic 

properties of the filter process in terms of the underlying state process, for controlled 

models such results are much more difficult. We discuss two possibilities to obtain a 

unique invariant measure for discrete-time controlled filtering processes. One is given by 

the case when the controlled filter process admits an embedded i.i.d. process (periodic 

return, with bounded average time, of the filter to a same measure). In this case, for 

which an example is shown, one can use the Law of Large Numbers and obtain not only 

existence and uniqueness of an invariant measure, but also its representation and this is 

particularly useful to obtain convergence results for approximations. A second possibility 

is given by the so-called "mixed observation" case , where one has perfect observation 

inside a given recurrent subset of the state space and partial observation outside. 



Numerical Methods in Optimal Nonlinear Filtering 

F. LeGland 

miSA/INRIA 

Campus de Beaulieu 

Algorithms that work today 

• extensive simulations (mainly Id) on a variety of examples 

Software (ZPB) 

robust and reliable, i.e., can handle 

wrong initial condition 

wrong parameters 

small observation noise 

• applications to some real-world problem 

Observations {Zt, t > 0}   about some unobserved state process {Xt, t > 0} 

Zt =  h(Xt) + vt 

(or:  dYt  = h(Xt)dt + dVt) 

Want to estimate Xt from % = <r(Ys, 0 < s < t), i.e., to compute 

(Pt,f)  =  Et[f(Xt)Zt|<Ut] 

with 

Zt =      , 
dp' 

Bayesian point of view:  model for {Xt, t > 0} 

Zt  = &r\«   = exp{ f'h(X.)dYB-| [' |h(Xs)|
2ds} 

dXt = b(Xt)dt + a(Xt)dWt + p(XtdVt 

Zt  = h(Xt) + vt 



Monte- Caxlo method 

i E f(xf)zf -+ (Pt,f> 
P=I 

as N—*oo, but 

• very delicate to implement [F^G, CDC'84, Las Vegas] 

• less reliable than other methods 

Time-evolution for {pt, t > 0} 

d 
dpt  =  L*ptdt+ EBkpt^Yt    (Zakai equation) 

k=l 

General approach   [Korezlioglu-Mazziotto] 

A sample observations   (a.s.) 

A A replace original model with simpler model (weak) 

A A A derive corresponding optimal filter 

A D relate with approximation for the Zakai equation 

Sampling observation —> Splitting-up approximation 

0 = t0 < ... < tn < tn+1 < ... A = tn+1-tn 

pA     =  0  ., p* pA 
n+l n+1    APn 

with 

• {p*, t > 0} semigroup associated with L* provides "explicit" solution of 
Xi 

Fokker-Planck equation 

m ^ = L*Pt 

1 likelihood function 

tfn+lM   =  exP{Mx)[Yt       -YtJ-f | h(x) | 2} 



provides explicit solution of 

d 
dpt   =   £] hk(x) pt dY*       (Bayes formula). 

k=l 

Approximate model: 

ZA   =   1 ry        _y   ]   =   1   f"n+1 Z ds 
Ha A I   tn+i      V        A J . s 

•Wl 

*n 

^   =   MXtn) + vA 

p    is exactly the associated optimal filter. 

Error estimate: 

PlP^-tiVf-  O(A) 
AT * 

Hint:  expand V'n+l' an<^ *A 
= 

compare with stochastic Taylor expansion 

Remark:  intrinsically stable (probabilistic interpretation) [Platen] 

Extensions: 

• higher-order sampling [FiG, CDC'89, Tampa] 

• correlated noise 

Bensoussan-Glowinski-Rascanu 

Elliott- Glowinski 

Florchinger-LeGland 

Further approximation: 

p*    =   eAL* 
A 

~ (I + AL*)     explicit 

~   (I-AL*)"1   implicit 



n+1 n 

or: 

( 

(I-AL*)pA+, = pA 

pf+1   =   ^n+lPf+i 
[Clark, 77] 

Approximate model: 

XA = X 

,A   _   uvA z*  =  h(X£) + v£ 

Pn is exactly the associated optimal filter 

still an elliptic PDE to be solved ... 

Finite differences   [Kushner, Kushner-Dupuis] 

gridG H 

For any x € GJJ: 

u(x+Hej)-u(x) 

few - ' 
H 

u(x) - u(x - He- 
H 

if bj(x) > 0 

if b;(x) < 0 

4- 



g2^    ^    u(x+Hei)-2u(x) + u(x-Hei) 

a1    — H dxf 

i*h7&hW * dx-jdx- 

ifaij(x)>0 

ifag(x)<0 

Lu(x) ~    53 LH(x'y)u(y) 
yecH 

only neighbors of x actually contribute. 

Approximate model: 

pure jump Markov process { Xt , t > 0} 

taking values in Gg, associated with Lg 

z*   =   h(XH'A) + VA 

Associated optimal filter solves 

(I-ALH)p   'J = Pn' 
n+£ 

p„A+? - *k+iiftf 

Variant:    ^n+i(x) evaluated on GH 

can be very inaccurate when observation noise small.  Replace with: 

generalized likelihood ratio. 

-5- 



Convergence: 

Hence 

TT      A 

X  '      =>  X      as A, H —> 0 independently (implicit). 

(PnA'H5f> ~> (Pt if)      in L1 sense (for P*) as A,H->0. 

General result   [Kushner] 

If Xn => X, then    En[f(X£) | %] -► E[f(Xt) | ty]      in L1 sense (for P). 

Extensions: 

• adaptive local grid refinement        [H. Zhang, PhD thesis, 92]. 

Special case:  noise-free state equation 

*t = b(Xt) 

{VtjS» 0 < s <t} associated flow of diffeomorphisms, i.e.,   Xt  =  (pt S(XS). 

P[Xta+i€B]  ,  P[Xtnev,-+iitn(B)l 

{Bjj, i € 1} partition of IRm at initial time "cells". 

6- 


